Your browser doesn't support javascript.
Montrer: 20 | 50 | 100
Résultats 1 - 2 de 2
Filtre
Ajouter des filtres

Base de données
Type de document
Gamme d'année
1.
biorxiv; 2022.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2022.03.25.485832

Résumé

The COVID-19 pandemic has had a staggering impact on social, economic, and public health systems worldwide. Vaccine development and mobilization against SARS-CoV-2 (the etiologic agent of COVID-19) has been rapid. However, novel strategies are still necessary to slow the pandemic, and this includes new approaches to vaccine development and/or delivery, which improve vaccination compliance and demonstrate efficacy against emerging variants. Here we report on the immunogenicity and efficacy of a SARS-CoV-2 vaccine comprised of stabilized, pre-fusion Spike protein trimers displayed on a ferritin nanoparticle (SpFN) adjuvanted with either conventional aluminum hydroxide or the Army Liposomal Formulation QS-21 (ALFQ) in a cynomolgus macaque COVID-19 model. Vaccination resulted in robust cell-mediated and humoral responses and a significant reduction of lung lesions following SARS-CoV-2 infection. The strength of the immune response suggests that dose sparing through reduced or single dosing in primates may be possible with this vaccine. Overall, the data support further evaluation of SpFN as a SARS-CoV-2 protein-based vaccine candidate with attention to fractional dosing and schedule optimization.


Sujets)
Maladies pulmonaires , COVID-19
2.
biorxiv; 2021.
Preprint Dans Anglais | bioRxiv | ID: ppzbmed-10.1101.2021.04.27.441510

Résumé

The emergence of SARS-CoV-2 pandemic has highlighted the need for animal models that faithfully recapitulate the salient features of COVID-19 disease in humans; these models are necessary for the rapid down-selection, testing, and evaluation of medical countermeasures. Here we performed a direct comparison of two distinct routes of SARS-CoV-2 exposure, combined intratracheal/intranasal and small particle aerosol, in two nonhuman primate species: rhesus and cynomolgus macaques. While all four experimental groups displayed very few outward clinical signs, evidence of mild to moderate respiratory disease was present on radiographs and at the time of necropsy. Cynomolgus macaques exposed via the aerosol route also developed the most consistent fever responses and had the most severe respiratory disease and pathology. This study demonstrates that while all four models were suitable representations of mild COVID-like illness, aerosol exposure of cynomolgus macaques to SARS-CoV-2 produced the most severe disease, which may provide additional clinical endpoints for evaluating therapeutics and vaccines.


Sujets)
COVID-19 , Infections de l'appareil respiratoire , Fièvre
SÉLECTION CITATIONS
Détails de la recherche